References
Apostol, T. M. (1974). Mathematical analysis; 2nd ed. Reading, MA: Addison-Wesley. Retrieved from https://cds.cern.ch/record/105425
Burden, R. L., Faires, J. D., & Reynolds, A. C. (2001). Numerical analysis. Brooks/cole Pacific Grove, CA.
De Boor, C. (1972). On calculating with b-splines. Journal of Approximation Theory, 6(1), 50–62.
Evert, S., & Baroni, M. (2007). ZipfR: Word frequency distributions in R. In Proceedings of the 45th annual meeting of the association for computational linguistics, posters and demonstrations sessions (pp. 29–32). Prague, Czech Republic.
Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1). Springer series in statistics New York.
Grossmann, A., & Morlet, J. (1984). Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM Journal on Mathematical Analysis, 15(4), 723–736.
Hamilton, J., Nunes, M. A., Knight, M. I., & Fryzlewicz, P. (2018). Complex-valued wavelet lifting and applications. Technometrics, 60(1), 48–60.
Hayfield, T., & Racine, J. S. (2008). Nonparametric econometrics: The np package. Journal of Statistical Software, 27(5). Retrieved from http://www.jstatsoft.org/v27/i05/
Herrick, D. (2000). Wavelet methods for curve estimation. PhD Thesis.
Hsu, D., Kakade, S. M., & Zhang, T. (2011). An analysis of random design linear regression. arXiv Preprint arXiv:1106.2363.
Hurvich, C. M., Simonoff, J. S., & Tsai, C.-L. (1998). Smoothing parameter selection in nonparametric regression using an improved akaike information criterion. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(2), 271–293.
Jansen, M. H., & Oonincx, P. J. (2005). Second generation wavelets and applications. Springer Science & Business Media.
Martinez, W. L., & Martinez, A. R. (2007). Computational statistics handbook with matlab. Chapman; Hall/CRC.
Nason, G. (2016). Wavethresh: Wavelets statistics and transforms. Retrieved from https://CRAN.R-project.org/package=wavethresh
Nunes, M., & Knight, M. (2018). CNLTreg: Complex-valued wavelet lifting for signal denoising. Retrieved from https://CRAN.R-project.org/package=CNLTreg
Schoenberg, I. J. (1946). Contributions to the problem of approximation of equidistant data by analytic functions. Part b. On the problem of osculatory interpolation. A second class of analytic approximation formulae. Quarterly of Applied Mathematics, 4(2), 112–141.
Sweldens, W. (1996). The lifting scheme: A custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis, 3(2), 186–200.
Sweldens, W. (1998). The lifting scheme: A construction of second generation wavelets. SIAM Journal on Mathematical Analysis, 29(2), 511–546.
Wackerly, D., Mendenhall, W., & Scheaffer, R. L. (2014). Mathematical statistics with applications. Cengage Learning.
Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. Retrieved from https://ggplot2.tidyverse.org
Wilke, C. O. (2019). Cowplot: Streamlined plot theme and plot annotations for ’ggplot2’. Retrieved from https://CRAN.R-project.org/package=cowplot
Wood, S. N. (2003). Thin-plate regression splines. Journal of the Royal Statistical Society (B), 65(1), 95–114. Retrieved from https://CRAN.R-project.org/package=mgcv